- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- + 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的长轴长为4,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)当
时,设
,过
作直线
交椭圆
于
、
两点,记椭圆
的左顶点为
,直线
,
的斜率分别为
,
,且
,求实数
的值.


(Ⅰ)求椭圆

(Ⅱ)当















已知椭圆
:
的离心率
,过椭圆的上顶点
和右顶点
的直线与原点
的距离为
,
(1)求椭圆
的方程;
(2)是否存在直线
经过椭圆左焦点与椭圆
交于
,
两点,使得以线段
为直径的圆恰好经过坐标原点
?若存在,求出直线
方程;若不存在,请说明理由.







(1)求椭圆

(2)是否存在直线







已知椭圆
的长轴长为
,且椭圆
与圆
的公共弦长为
(1)求椭圆
的方程.
(2)过点
作斜率为
的直线
与椭圆
交于两点
,试判断在
轴上是否存在点
,使得
为以
为底边的等腰三角形.若存在,求出点
的横坐标的取值范围,若不存在,请说明理由.





(1)求椭圆

(2)过点










已知椭圆
:
的离心率为
,且过点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)设直线
:
与椭圆
相交于
、
两点,且直线
,
,
的斜率依次成等比数列,求直线
的斜率.




(Ⅰ)求椭圆

(Ⅱ)设直线









平面直角坐标系
中,已知椭圆
的离心率为
,且点
在椭圆
上.椭圆
的左顶点为
.
(1)求椭圆
的标准方程;
(2)过点
作直线
与椭圆
交于另一点
.若直线
交
轴于点
,且
,求直线
的斜率.







(1)求椭圆

(2)过点









已知
是圆
上的一个动点,过点
作两条直线
,它们与椭圆
都只有一个公共点,且分别交圆于点
.

(Ⅰ)若
,求直线
的方程;
(Ⅱ)①求证:对于圆上的任意点
,都有
成立;
②求
面积的取值范围.







(Ⅰ)若


(Ⅱ)①求证:对于圆上的任意点


②求
