刷题首页
题库
高中数学
题干
平面直角坐标系
中,已知椭圆
的离心率为
,且点
在椭圆
上.椭圆
的左顶点为
.
(1)求椭圆
的标准方程;
(2)过点
作直线
与椭圆
交于另一点
.若直线
交
轴于点
,且
,求直线
的斜率.
上一题
下一题
0.99难度 解答题 更新时间:2019-08-20 02:10:05
答案(点此获取答案解析)
同类题1
已知椭圆
:
经过
,且椭圆
的离心率为
.
(1)求椭圆
的方程;
(2)设斜率存在的直线
与椭圆
交于
,
两点,
为坐标原点,
,且
与圆心为
的定圆
相切,求圆
的方程.
同类题2
已知
、
分别是离心率为
的椭圆
:
的左、右焦点,点
是椭圆
上异于其左、右顶点的任意一点,过右焦点
作
的外角平分线
的垂线
,交
于点
,且
(
为坐标原点).
(1)求椭圆
的方程;
(2)若点
在圆
上,且在第一象限,过
作圆
的切线交椭圆于
、
两点,问:
的周长是否为定值?如果是,求出该定值;如果不是,说明理由.
同类题3
已知椭圆
:
(
),右焦点
,点
在椭圆上;
(1)求椭圆
C
的标准方程;
(2)是否存在过原点的直线
l
与椭圆
C
交于
A
、
B
两点,且
?若存在,请求出所有符合要求的直线;若不存在,请说明理由.
同类题4
已知椭圆
的一个焦点与抛物线
的焦点重合,点
在
L
上.
(1)求
L
的方程;
(2)直线
l
不过原点
O
且不平行于坐标轴,
l
与
L
有两个交点
A
,
B
,线段
AB
的中点为
M
,证明:
OM
的斜率与直线
l
的斜率的乘积为定值.
同类题5
如图,已知椭圆
:
,左顶点为
,经过点
,过点
作斜率为
的直线
交椭圆
于点
,交
轴于点
.
(1)求椭圆
的方程;
(2)已知
为
的中点,
,证明:对于任意的
都有
恒成立;
(3)若过点
作直线
的平行线交椭圆
于点
,求
的最小值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据直线与椭圆的位置关系求参数或范围