- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的方程为
,椭圆
的离心率正好是双曲线
的离心率的倒数,椭圆
的短轴长等于抛物线
上一点
到抛物线焦点
的距离.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
的两个交点为
,
两点,已知圆
:
与
轴的交点分别为
,
(点
在
轴的正半轴),且直线
与圆
相切,求
的面积与
的面积乘积的最大值.








(1)求椭圆

(2)若直线















如图,在平面直角坐标系
中,已知椭圆
的左顶点为
,过
的直线交椭圆
于另一点
,直线
交
轴于点
,且
.

(1)求椭圆
的离心率;
(2)若椭圆
的焦距为
,
为椭圆
上一点,线段
的垂直平分线
在
轴上的截距为
(
不与
轴重合),求直线
的方程.











(1)求椭圆

(2)若椭圆











已知:椭圆
的焦点在
轴上,左焦点
与短轴两顶点围成面积为
的等腰直角三角形,直线
与椭圆
交于不同两点
、
(
、
都在
轴上方),且
.
(1)求椭圆
的标准方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
的方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.












(1)求椭圆

(2)当



(3)对于动直线



已知两点
、
,点
是直角坐标平面上的动点,若将点
的横坐标保持不变、纵坐标扩大到
倍后得到点
,且满足
.
(1)求动点
所在曲线
的方程;
(2)过点
作斜率为
的直线
交曲线
于
、
两点,且满足
,又点
关于原点
的对称点为点
,求点
、
的坐标.







(1)求动点


(2)过点












设椭圆
的右顶点为A,下顶点为B,过A、O、B(O为坐标原点)三点的圆的圆心坐标为
.
(1)求椭圆的方程;
(2)已知点M在x轴正半轴上,过点B作BM的垂线与椭圆交于另一点N,若∠BMN=60°,求点M的坐标.


(1)求椭圆的方程;
(2)已知点M在x轴正半轴上,过点B作BM的垂线与椭圆交于另一点N,若∠BMN=60°,求点M的坐标.
已知椭圆
的离心率为
,椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)设点
是椭圆
上的任意一点,射线
与椭圆
交于点
,过点
的直线
与椭圆
有且只有一个公共点,直线
与椭圆
交于
两个相异点,证明:
面积为定值.




(1)求椭圆

(2)设点











