刷题首页
题库
高中数学
题干
已知抛物线
的焦点为
,点
的坐标为
,点
在抛物线
上,且满足
,(
为坐标原点).
(1)求抛物线
的方程;
(2)过点
作斜率乘积为1的两条不重合的直线
,且
与抛物线
交于
两点,
与抛物线
交于
两点,线段
的中点分别为
,求证:直线
过定点,并求出定点坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-05-31 09:42:02
答案(点此获取答案解析)
同类题1
在直角坐标系
中,直线
与抛物线
交于
,
两点,且
.
(1)求
的方程;
(2)试问:在
轴的正半轴上是否存在一点
,使得
的外心在
上?若存在,求
的坐标;若不存在,请说明理由..
同类题2
若抛物线
的焦点与双曲线
的右焦点重合,则实数
的值为____.
同类题3
已知抛物线
的顶点在原点,焦点在
轴上,且抛物线上有一点
到焦点的距离为6.
(1)求该抛物线
的方程;
(2)已知抛物线上一点
,过点
作抛物线的两条弦
和
,且
,判断直线
是否过定点,并说明理由.
同类题4
已知顶点在原点的抛物线
的焦点与椭圆
的右焦点重合,则抛物线
的方程为______.
同类题5
已知抛物线
的焦点坐标为
(1)求抛物线的标准方程.
(2)若过
的直线
与抛物线交于
两点,在抛物线上是否存在定点
,使得以
为直径的圆过定点
.若存在,求出点
,若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据焦点或准线写出抛物线的标准方程
抛物线中的直线过定点问题