- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,已知点
是抛物线
上一定点,直线
的倾斜角互补,且与抛物线另交于
,
两个不同的点.

(1)求点
到其准线的距离;
(2)求证:直线
的斜率为定值.






(1)求点

(2)求证:直线

设抛物线
的焦点为
,过点
的直线与抛物线相交于
,
两点,与抛物线的准线相交于点
,
,则
与
的面积之比
等于( )










A.![]() | B.![]() | C.![]() | D.![]() |
已知动圆P与圆
:
内切,且与直线
相切,设动圆圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过曲线
上一点
(
)作两条直线
,
与曲线
分别交于不同的两点
,
,若直线
,
的斜率分别为
,
,且
.证明:直线
过定点.





(1)求曲线

(2)过曲线













