- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求双曲线的离心率或离心率的取值范围
- 双曲线离心率大小与双曲线形状的关系
- 根据离心率求双曲线的标准方程
- 求共离心率的双曲线的标准方程
- 由双曲线的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知双曲线C:
1(a>0,b>0),右顶点是A,若双曲线C右支上存在两点B、C,使△ABC为正三角形,则双曲线C的离心率e的取值范围是_____.

已知双曲线
1(a>0,b>0),过原点的一条直线与双曲线交于A,B两点,点F为双曲线的右焦点,且满足AF⊥BF,设∠ABF
,则该双曲线离心率e的值为( )


A.2![]() | B.![]() | C.2![]() | D.![]() |
双曲线
(a>0,b>0)的半焦距为c,点A(0,b)到渐近线的距离为
c.
(1)求双曲线的离心率;
(2)若双曲线的左、右焦点分别为F1,F2,焦距为4,双曲线右支上存在一点P,使得PF1⊥PF2,求点P的坐标.


(1)求双曲线的离心率;
(2)若双曲线的左、右焦点分别为F1,F2,焦距为4,双曲线右支上存在一点P,使得PF1⊥PF2,求点P的坐标.
设F1,F2是双曲线C,
(a>0,b>0)的两个焦点。若在C上存在一点P。使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为________________.

已知在菱形ABCD中,∠BCD=60°,曲线C1是以A,C为焦点,且经过B,D两点的椭圆,其离心率为e1;曲线C2是以A,C为焦点,渐近线分别和AB,AD平行的双曲线,其离心率为e2,则e1e2=( )
A.![]() | B.![]() | C.1 | D.![]() |