过椭圆(a>b>0)上的点PPMx轴于M(MP不重合),A1A2是椭圆的长轴,则的值是___________.
当前题号:1 | 题型:填空题 | 难度:0.99
如图,分别是椭圆的左、右顶点,圆的半径为2,过点作圆的切线,切点为,在轴的上方交椭圆于点,则_______.
当前题号:2 | 题型:填空题 | 难度:0.99
如图,我区新城公园将在长34米、宽30米的矩形地块内开凿一个“挞圆”形水池,水池边缘由两个半椭圆组成,其中,“挞圆”内切于矩形(即“挞圆”与矩形各边均有且只有一个公共点).

(1)求“挞圆”的方程;
(2)在“挞圆”形水池内建一矩形网箱养殖观赏鱼,若该矩形网箱的一条边所在直线方程为,求该网箱所占水面面积的最大值.
当前题号:3 | 题型:解答题 | 难度:0.99
某高速公路隧道设计为单向三车道,每条车道宽4米,要求通行车辆限高5米,隧道全长1.5千米,隧道的断面轮廓线近似地看成半个椭圆形状(如图所示).

(1)若最大拱高为6米,则隧道设计的拱宽至少是多少米?(结果取整数)
(2)如何设计拱高和拱宽,才能使半个椭圆形隧道的土方工程量最小?(结果取整数)
参考数据:,椭圆的面积公式为,其中分别为椭圆的长半轴和短半轴长.
当前题号:4 | 题型:解答题 | 难度:0.99
某海域有两个岛屿,岛在岛正东4海里处,经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发出过鱼群.以所在直线为轴,的垂直平分线为轴建立平面直角坐标系.

(1)求曲线的标准方程;
(2)某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?
当前题号:5 | 题型:解答题 | 难度:0.99
定义:曲线称为椭圆的“倒椭圆”.已知椭圆,它的“倒椭圆”
(1)写出“倒椭圆”的一条对称轴、一个对称中心;并写出其上动点横坐标x的取值范围.
(2)过“倒椭圆”上的点P,作直线PA垂直于x轴且垂足为点A,作直线PB垂直于y轴且垂足为点B,求证:直线AB与椭圆只有一个公共点.
(3)是否存在直线l与椭圆无公共点,且与“倒椭圆”无公共点?若存在,请给出满足条件的直线l,并说明理由;若不存在,请说明理由.
当前题号:6 | 题型:解答题 | 难度:0.99
人造地球卫星绕地球运行遵循开普勒行星运动定律:如图,卫星在以地球的中心为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地心的连线)在相同的时间内扫过的面积相等设该椭圆的长轴长、焦距分别为.某同学根据所学知识,得到下列结论:

①卫星向径的取值范围是
②卫星向径的最小值与最大值的比值越大,椭圆轨道越扁
③卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间
④卫星运行速度在近地点时最小,在远地点时最大
其中正确的结论是(   )
A.①②B.①③C.②④D.①③④
当前题号:7 | 题型:单选题 | 难度:0.99
已知椭圆焦点为且过点,椭圆上一点到两焦点,的距离之差为2,
(1)求椭圆的标准方程;
(2)求的面积.
当前题号:8 | 题型:解答题 | 难度:0.99
分别为椭圆的左、右焦点,点在椭圆上,且,则(  )
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99
已知椭圆,直线不过原点且不平行于坐标轴,有两个交点,线段的中点为
(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;
(Ⅱ)若过点,延长线段交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.
当前题号:10 | 题型:解答题 | 难度:0.99