- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- + 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,
,
是椭圆
:
上的三点,其中
的坐标为
,
过椭圆
的中心,且椭圆长轴的一个端点与短轴的两个端点构成正三角形.

(1)求椭圆
的方程;
(2)当直线
的斜率为1时,求
面积;
(3)设直线
:
与椭圆
交于两点
,
,且线段
的中垂线过椭圆
与
轴负半轴的交点
,求实数
的值.










(1)求椭圆

(2)当直线


(3)设直线










已知椭圆
:
与双曲线
:
有相同左右焦点
,
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)若直线
过
且与椭圆
交于
,
两点,若
,求直线
的斜率取值范围.








(1)求椭圆

(2)若直线







已知
为椭圆C:
1(a>b>0)的一个焦点,且点
在椭圆C上.
(1)求椭圆C的方程;
(2)若点P(m,0)为椭圆C的长轴上一动点,过P且斜率为
的直线l交椭圆C于A,B两点,求证|PA|2+|PB|2为定值.



(1)求椭圆C的方程;
(2)若点P(m,0)为椭圆C的长轴上一动点,过P且斜率为

已知椭圆
:
,过椭圆右焦点的最短弦长是
,且点
在椭圆上.
(1)求该椭圆的标准方程;
(2)设动点
满足:
,其中
,
是椭圆上的点,直线
与直线
的斜率之积为
,求点
的轨迹方程并判断是否存在两个定点
、
,使得
为定值?若存在,求出定值;若不存在,说明理由.




(1)求该椭圆的标准方程;
(2)设动点











已知椭圆
的中心在坐标原点,且经过点
,它的一个焦点与抛物线
的焦点重合.
(1)求椭圆
的方程;
(2)斜率为
的直线过点
,且与抛物线
交于
两点,设点
,
的面积为
,求
的值;
(3)若直线
过点
,且与椭圆
交于
两点,点
关于
轴的对称点为
,直线
的纵截距为
,证明:
为定值.



(1)求椭圆

(2)斜率为








(3)若直线











已知椭圆C:
(
)的左、右焦点分别是
、
,过
的直线l与C相交于A,B两点,
的周长为
,且椭圆C过点
.
(1)求椭圆C的标准方程;
(2)设
和
的面积分别为
和
,
,求实数
的取值范围.








(1)求椭圆C的标准方程;
(2)设






在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的椭圆C经过点M(2,1),N(
,-
).
(1)求椭圆C的标准方程;
(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的A,B两点,求直线AB的斜率.


(1)求椭圆C的标准方程;
(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的A,B两点,求直线AB的斜率.
(理)已知
分别是椭圆
(其中
)的左、右焦点,椭圆
过点
且与抛物线
有一个公共的焦点.
(1)求椭圆
的方程;
(2)过椭圆
的右焦点且斜率为1的直线
与椭圆交于
、
两点,求线段
的长度.






(1)求椭圆

(2)过椭圆




