- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- + 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
焦点在x轴上的椭圆C:
经过点
,椭圆C的离心率为
.
,
是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为
的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.





(1)求椭圆的标准方程;
(2)若点M为




在直角坐标系
中,椭圆
:
,点
在椭圆
上,过点
作圆
的切线,其切线长为椭圆
的短轴长.
(Ⅰ)求椭圆
的方程;
(Ⅱ)直线
与椭圆
的另一个交点为
,点
在椭圆
上,且
,直线
与
轴交于
点.设直线
,
的斜率分别为
,
,求
的值.








(Ⅰ)求椭圆

(Ⅱ)直线














已知椭圆
的右焦点为
,且点
在椭圆C上.
(1)求椭圆C的标准方程;
(2)过椭圆
上异于其顶点的任意一点Q作圆
的两条切线,切点分别为
不在坐标轴上),若直线
在x轴,y轴上的截距分别为
,证明:
为定值;
(3)若
是椭圆
上不同两点,
轴,圆E过
,且椭圆
上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆
是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.



(1)求椭圆C的标准方程;
(2)过椭圆






(3)若






已知椭圆
,且椭圆C上恰有三点在集合
中.
(1)求椭圆C的方程;
(2)若点O为坐标原点,直线AB与椭圆交于A、B两点,且满足
,试探究:点O到直线AB的距离是否为定值.如果是,请求出定值:如果不是,请明说理由.
(3)在(2)的条件下,求
面积的最大值.


(1)求椭圆C的方程;
(2)若点O为坐标原点,直线AB与椭圆交于A、B两点,且满足

(3)在(2)的条件下,求

已知椭圆
:
(
),右焦点
,点
在椭圆上;
(1)求椭圆C的标准方程;
(2)是否存在过原点的直线l与椭圆C交于A、B两点,且
?若存在,请求出所有符合要求的直线;若不存在,请说明理由.





(1)求椭圆C的标准方程;
(2)是否存在过原点的直线l与椭圆C交于A、B两点,且

已如椭圆
,四点


中恰有三点在椭圆上.
(1)求椭圆C的方程;
(2)设不经过左焦点的直线
交椭圆于A,B两点,若直线
、
、
的斜率依次成等差数列,求直线l的斜率k的取值范围.






(1)求椭圆C的方程;
(2)设不经过左焦点的直线




已知椭圆
:
的四个顶点组成的四边形的面积为
,且经过点
.

(1)求椭圆
的方程;
(2)若椭圆
的下顶点为
,如图所示,点
为直线
上的一个动点,过椭圆
的右焦点
的直线
垂直于
,且与
交于
,
两点,与
交于点
,四边形
和
的面积分别为
,
,求
的最大值.





(1)求椭圆

(2)若椭圆


















根据下列条件,求椭圆的标准方程.
(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10;
(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点
.
(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10;
(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点
