刷题首页
题库
高中数学
题干
已知椭圆
:
,过椭圆右焦点的最短弦长是
,且点
在椭圆上.
(1)求该椭圆的标准方程;
(2)设动点
满足:
,其中
,
是椭圆上的点,直线
与直线
的斜率之积为
,求点
的轨迹方程并判断是否存在两个定点
、
,使得
为定值?若存在,求出定值;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-13 05:21:00
答案(点此获取答案解析)
同类题1
已知椭圆
的左、右焦点分别为F
1
、F
2
,离心率为
,且经过点
.
(1)求椭圆C的方程;
(2)动直线
与椭圆C相交于点M,N,椭圆C的左右顶点为
,直线
与
相交于点
,证明点
在定直线上,并求出定直线的方程.
同类题2
已知椭圆
,四点
,
,
,
中恰有三点在椭圆
上.
(Ⅰ)求
的方程;
(Ⅱ)设直线
与椭圆
相交于
两点.若直线
与直线
的斜率的和为
,证明:
必过定点,并求出该定点的坐标.
同类题3
已知椭圆
的焦距为
,且经过点
.
(1)求椭圆
的方程;
(2)设
是椭圆
与
轴正半轴的交点,
上是否存在两点
,使得
是以
为直角顶点的等腰直角三角形?若存在,请说明满足条件的
的个数;若不存在,请说明理由.
同类题4
已知椭圆
:
的离心率为
,点
在椭圆上,
为坐标原点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知点
、
、
为椭圆
上的三点,若四边形
为平行四边形,证明四边形
的面积
为定值,并求出该定值.
同类题5
焦点在
轴上,离心率
,且过
的椭圆的标准方程为_______.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定值问题