刷题首页
题库
高中数学
题干
已如椭圆
,四点
中恰有三点在椭圆上.
(1)求椭圆
C
的方程;
(2)设不经过左焦点的直线
交椭圆于
A
,
B
两点,若直线
、
、
的斜率依次成等差数列,求直线
l
的斜率
k
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-07 09:44:03
答案(点此获取答案解析)
同类题1
直角坐标系
中,曲线
与
轴负半轴交于点
,直线
与
相切于
,
为
上任意一点,
为
在
上的射影,
为
的中点.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)轨迹
与
轴交于
,点
为曲线
上的点,且
,
,试探究三角形
的面积是否为定值,若为定值,求出该值;若非定值,求其取值范围.
同类题2
已知椭圆
的焦点坐标为
,椭圆经过点
(1)求椭圆方程;
(2)过椭圆左顶点
与直线
上点
N
的直线交椭圆于点
P
,求
的值.
(3)过右焦点且不与对称轴平行的直线
交椭圆于
A
、
B
两点,点
,若
与
的斜率无关,求
t
的值
同类题3
设
分别是椭圈
的左、右焦点,
是椭圆上第二象限内的一点且
与
轴垂直,直线
与椭圆的另一个交点为
.
(1)若直线
的斜率为
,求椭圆的离心率;
(2)若直线
与
轴的交点为
,且
求
.
同类题4
已知椭圆
的右焦点为
,上顶点为
,直线
与直线
垂直,椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)过点
作椭圆
的两条互相垂直的弦
.若弦
的中点分别为
,证明:直线
恒过定点.
同类题5
已知椭圆
(
)的一个焦点坐标为
,点
在
上.
(1)求
的方程;
(2)直线
不经过原点
,且不平行于坐标轴,
与
有两个交点
、
,线段
中点为
,证明:直线
的斜率与直线
的斜率乘积为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程