- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某隧道设计为双向四车道,车道总宽22米。要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个桶圆形状(如图)。

(1)若最大拱高
为6米,则隧道设计的拱宽
是多少米?
(2)若最大拱高
不小于6米,则应如何设计拱高
和拱宽
,才能使半个椭圆形隧道的土方工程量最小,并求出最小土方量?(已知:椭圆
的面积公式为
,本题结果拱高
和拱宽
精确到0.01米,土方量精确到1米3)

(1)若最大拱高


(2)若最大拱高







已知直线
经过椭圆
:
的左顶点
和上顶点
,椭圆
的右顶点为
,点
是椭圆
上位于
轴上方的动点,直线
与直线
分别交于
两点.
(1)求椭圆方程;
(2)求线段
的长度的最小值;
(3)当线段
的长度最小时,在椭圆上有两点
,使得
,
的面积都为
,求直线
在y轴上的截距.













(1)求椭圆方程;
(2)求线段

(3)当线段






已知椭圆
的右焦点为
,离心率为
,直线
被椭圆截得的弦长为
求椭圆
的标准方程
若
是椭圆
上一点,
是坐标原点,过点
与直线
平行的直线与椭圆
的两个交点为
,且
,求
的最大值

















已知椭圆
的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4
(1)求椭圆
的方程;
(2)若
是椭圆
的左顶点,经过左焦点
的直线
与椭圆
交于
、
两点,求
与
的面积之差的绝对值的最大值,并求取得最大值时直线
的方程.
为坐标原点)

(1)求椭圆

(2)若











已知椭圆
的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A,B两点,坐标原点O到直线l的距离为
,求
面积的最大值.



(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A,B两点,坐标原点O到直线l的距离为


如图,已知椭圆
的离心率为
,
、
分别是椭圆的左、右焦点,点
是椭圆上任意一点,且
.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)在直线
上是否存在点Q,使以
为直径的圆经过坐标原点O,若存在,求出线段
的长的最小值,若不存在,请说明理由.







(Ⅰ)求椭圆的标准方程;
(Ⅱ)在直线



已知椭圆
的两个焦点
,
与短轴的一个端点构成一个等边三角形,且直线
与圆
相切.
(1)求椭圆
的方程;
(2)已知过椭圆
的左顶点
的两条直线
,
分别交椭圆
于
,
两点,且
,求证:直线
过定点,并求出定点坐标;
(3)在(2)的条件下求
面积的最大值.





(1)求椭圆

(2)已知过椭圆









(3)在(2)的条件下求

已知椭圆
过点
,离心率为
.
(1)求椭圆
的方程;
(2)
,
是过点
且互相垂直的两条直线,其中
交圆
于
,
两点,
交椭圆
于另一个点
,求
面积取得最大值时直线
的方程.



(1)求椭圆

(2)












已知抛物线
的焦点也是椭圆
:
的右焦点,而
的离心率恰好为双曲线
的离心率的倒数.
(1)求椭圆
的方程;
(2)各项均为正数的等差数列
中,
,点
在椭圆
上,设
,求数列
的前
项和
.





(1)求椭圆

(2)各项均为正数的等差数列







