- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
的离心率为
,
为椭圆
上一点.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
,
两点,直线
与直线
相交于点
,求证:直线
,
,
的斜率成等差数列.






(1)求椭圆

(2)过点











已知椭圆
的左、右焦点分别为
、
,离心率为
,点
是椭圆
上的一个动点,且
面积的最大值为
.
(1)求椭圆
的方程;
(2)过点
作直线
交椭圆
于
、
两点,过点
作直线
的垂线
交圆
:
于另一点
.若
的面积为3,求直线
的斜率.








(1)求椭圆

(2)过点













已知椭圆
的左、右焦点分别为
、
且经过点
(1)求椭圆
的方程;
(2)直线
与椭圆
相交于
两点,
点为椭圆
上的动点,且
请问
的面积是否存在最小值?若存在,求出此时直线
的方程;若不存在,说明理由.




(1)求椭圆

(2)直线








已知椭圆C的两个顶点分别为A(−2,0),B(2,0),焦点在x轴上,离心率为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.

(Ⅰ)求椭圆C的方程;
(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.
在平面直角坐标系
中,椭圆E:
(
)的长轴长为4,左准线l的方程为
.

(1)求椭圆的标准方程;
(2)直线
过椭圆E的左焦点
,且与椭圆E交于A,B两点.
①若
,求直线
的方程;
②过A作左准线l的垂线,垂足为
,点
,求证:
,B,G三点共线.





(1)求椭圆的标准方程;
(2)直线


①若


②过A作左准线l的垂线,垂足为



已知椭圆
的左顶点为
,右焦点为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
两点,直线
分别与
轴交于点
,在
轴上,是否存在点
,使得无论非零实数
怎样变化,总有
为直角?若存在,求出点
的坐标;若不存在,请说明理由.





(1)求椭圆

(2)若直线











已知椭圆
的一个焦点与抛物线
的焦点重合,且抛物线的准线被椭圆
截得的弦长为1,
是直线
上一点,过点
且与
垂直的直线交椭圆于
两点.

(1)求椭圆
的标准方程;
(2)设直线
的斜率分别为
,求证:
成等差数列.









(1)求椭圆

(2)设直线



如图,已知
,
为椭圆
短轴的两个端点,且椭圆的离心率为
.

(1)求椭圆
的方程;
(2)若经过点
的直线
与椭圆
的另一个交点记为
,经过原点
且与
垂直的直线记为
,且直线
与直线
的交点记为
,证明:
是定值,并求出这个定值.





(1)求椭圆

(2)若经过点











已知椭圆
的左、右焦点为别为F1、F2,且过点
和
.

(1)求椭圆的标准方程;
(2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点B,AO的延长线与椭圆交于点C,求△ABC面积的最大值,并写出取到最大值时直线BC的方程.




(1)求椭圆的标准方程;
(2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点B,AO的延长线与椭圆交于点C,求△ABC面积的最大值,并写出取到最大值时直线BC的方程.