- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- + 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
过点
,
为椭圆上一点,椭圆在点
处的切线与直线
和右准线
分别交于点

(1)求椭圆的方程;
(2)
为椭圆的焦点,当点
在椭圆上移动时,请问
的值是否为定值,并说明理由.








(1)求椭圆的方程;
(2)



已知椭圆
的离心率为
,且椭圆C过点
.
(1)求椭圆C的方程;
(2)设椭圆C的右焦点为F,直线
与椭圆C相切于点A,与直线
相交于点B,求证:
的大小为定值.



(1)求椭圆C的方程;
(2)设椭圆C的右焦点为F,直线



已知椭圆
中心在原点
,焦点在坐标轴上,直线
与椭圆
在第一象限内的交点是
,点
在
轴上的射影恰好是椭圆
的右焦点
,椭圆
另一个焦点是
,且
.
(1)求椭圆
的方程;
(2)设过点
的直线
与
交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
.若
,且
,求直线
的方程.












(1)求椭圆

(2)设过点














已知椭圆
过点
,且其中一个焦点的坐标为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
:
与椭圆交于两点
,在
轴上是否存在点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.



(Ⅰ)求椭圆

(Ⅱ)若直线







已知椭圆
的离心率为
,且椭圆上的一点与两个焦点构成的三角形周长为
.
(Ⅰ)求椭圆
的方程; (Ⅱ)已知直线
与椭圆
交于
两点,若点
的坐标为
,则
是否为定值?若是,求该定值;若不是,请说明理由.



(Ⅰ)求椭圆







在平面直角坐标系中,已知椭圆
的两个焦点分别是
,直线
与椭圆交于
两点.
(1)若
为椭圆短轴上的一个顶点,且
是直角三角形,求
的值;
(2)若
,且
是以
为直角顶点的直角三角形,求
与
满足的关系;
(3)若
,且
,求证:
的面积为定值.




(1)若



(2)若





(3)若











(1)求该椭圆的标准方程;
(2)过点






