- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- + 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆与椭圆
有相同的长轴,椭圆
的短轴长与椭圆
的短轴长相等,则( )
A.a2=25,b2=16 |
B.a2=9,b2=25 |
C.a2=25,b2=9或a2=9,b2=25 |
D.a2=25,b2=9 |
已知双曲线C:
(a>0,b>0)与椭圆
有共同的焦点,点
在双曲线C上.
(1)求双曲线C的标准方程;
(2)以
为中点作双曲线C的一条弦AB,求弦AB所在直线的方程.



(1)求双曲线C的标准方程;
(2)以

已知椭圆
过点
,
为椭圆上一点,椭圆在点
处的切线与直线
和右准线
分别交于点

(1)求椭圆的方程;
(2)
为椭圆的焦点,当点
在椭圆上移动时,请问
的值是否为定值,并说明理由.








(1)求椭圆的方程;
(2)



已知椭圆
,
的右焦点
,长轴的左、右端点分别为
,
,且
.
(1)求椭圆
的方程;
(2)过焦点
斜率为
的直线
交椭圆
于
,
两点,弦
的垂直平分线与
轴相交于点
.试问椭圆
上是否存在点
使得四边形
为菱形?






(1)求椭圆

(2)过焦点











