- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- + 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角坐标系
中,设椭圆
的左焦点为
,短轴的两个端点分别为
,且
,点
在
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
与椭圆
和圆
分别相切于
,
两点,当
面积取得最大值时,求直线
的方程.







(Ⅰ)求椭圆

(Ⅱ)若直线







已知椭圆的焦点坐标为
,
,过
垂直于长轴的直线交椭圆于
、
两点,且
.

(Ⅰ)求椭圆的方程;
(Ⅱ)过
的直线
与椭圆交于不同的两点
、
,则
的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.







(Ⅰ)求椭圆的方程;
(Ⅱ)过





已知椭圆
:
的左、右焦点分别为
,椭圆
上一点
与两焦点构成的三角形的周长为6,离心率为
。
(1)求椭圆
的方程;
(2)若斜率为1的直线
与椭圆
相切,求直线
的方程。






(1)求椭圆

(2)若斜率为1的直线



以下四个关于圆锥曲线的命题,
①双曲线
与椭圆
有相同的焦点;
②在平面内,设
为两个定点,
为动点,且
,其中常数
为正实数,则动点
的轨迹为椭圆;
③方程
的两根可以分别作为椭圆和双曲线的离心率;
④过双曲线
的右焦点
作直线
交双曲线于
两点,若
,则这样的直线
有且仅有3条.
其中真命题的个数为( )
①双曲线


②在平面内,设





③方程

④过双曲线






其中真命题的个数为( )
A.4 | B.3 | C.2 | D.1 |
已知椭圆M:
(a>b>0)的一个焦点为F(﹣1,0),离心率
,左右顶点分别为A、B,经过点F的直线l与椭圆M交于C、D两点(与A、B不重合).
(1)求椭圆M的方程;
(2)记△ABC与△ABD的面积分别为S1和S2,求|S1﹣S2|的最大值,并求此时l的方程.


(1)求椭圆M的方程;
(2)记△ABC与△ABD的面积分别为S1和S2,求|S1﹣S2|的最大值,并求此时l的方程.