- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与圆的实际应用
- + 坐标法的应用——直线与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆C过点
,且与圆M:
关于直线
对称.
求圆C的方程;
过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.





已知点A(0,-1),B(0,1),以点P(m,4)为圆心,|PB|为半径作圆Γ,圆Γ在B处的切线为直线l,过点A作圆Γ的一条切线与l交于点M,则|MA|+|MB|=______.
已知圆O:x2+y2=2,直线.l:y=kx-2.
(1)若直线l与圆O相切,求k的值;
(2)若直线l与圆O交于不同的两点A,B,当∠AOB为锐角时,求k的取值范围;
(3)若
,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点为C,D,探究:直线CD是否过定点.
(1)若直线l与圆O相切,求k的值;
(2)若直线l与圆O交于不同的两点A,B,当∠AOB为锐角时,求k的取值范围;
(3)若

已知点A(-5,0),B(-1,-3),若圆C:
上恰有两点M,N,使得△MAB和△NAB的面积均为5,则r的取值范围是( )

A.![]() | B.(1,5) | C.(2,5) | D.![]() |
已知圆
,直线过点
,且
,线段
交圆
的交点为点
,
是
关于轴的对称点.

(1)求直线
的方程;
(2)已知
是圆
上不同的两点,且
,试证明直线
的斜率为定值,并求出该定值.









(1)求直线

(2)已知




已知圆
和圆
.

(1)若直线
过点
,且被圆
截得的弦长为2
,求直线
的方程;
(2)设
为平面上的点,满足:存在过点
的无穷多对互相垂直的直线
和
,且直线
被圆
截得的弦长与直线
被圆
截得的弦长相等,试求所有满足条件的点
的坐标.



(1)若直线





(2)设








