- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与圆的实际应用
- + 坐标法的应用——直线与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某沿海地区的海岸线为一段圆弧
,对应的圆心角
,该地区为打击走私,在海岸线外侧
海里内的海域
对不明船只进行识别查证(如图:其中海域与陆地近似看作在同一平面内),在圆弧的两端点
、
分别建有监测站,
与
之间的直线距离为
海里.

(1)求海域
的面积;
(2)现海上
点处有一艘不明船只,在
点测得其距
点
海里,在
点测得其距
点
海里.判断这艘不明船只是否进入了海域
?请说明理由.










(1)求海域

(2)现海上








已知圆C经过点
,
,且圆心在直线
上
(1)求圆C的方程.
(2)过点
的直线与圆C交于A,B两点,问:在直线
上是否存在定点N,使得
(
,
分别为直线AN,BN的斜率)恒成立?若存在,请求出点N的坐标;若不存在,请说明理由.



(1)求圆C的方程.
(2)过点





在平面直角坐标系xOy中,已知直线
与圆O:
相切.
(1)直线l过点(2,1)且截圆O所得的弦长为
,求直线l的方程;
(2)已知直线y=3与圆O交于A,B两点,P是圆上异于A,B的任意一点,且直线AP,BP与y轴相交于M,N点.判断点M、N的纵坐标之积是否为定值?若是,求出该定值;若不是,说明理由.


(1)直线l过点(2,1)且截圆O所得的弦长为

(2)已知直线y=3与圆O交于A,B两点,P是圆上异于A,B的任意一点,且直线AP,BP与y轴相交于M,N点.判断点M、N的纵坐标之积是否为定值?若是,求出该定值;若不是,说明理由.
已知椭圆C的左、右焦点坐标分别是
,
,离心率是
,直线
与椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P。
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值。




(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值。
已知圆C过点A(2,6),且与直线l1: x+y-10=0相切于点B(6,4).
(1)求圆C的方程;
(2)过点P(6,24)的直线l2与圆C交于M,N两点,若△CMN为直角三角形,求直线l2的斜率;
(3)在直线l3: y=x-2上是否存在一点Q,过点Q向圆C引两切线,切点为E,F, 使△QEF为正三角形,若存在,求出点Q的坐标,若不存在,说明理由.
(1)求圆C的方程;
(2)过点P(6,24)的直线l2与圆C交于M,N两点,若△CMN为直角三角形,求直线l2的斜率;
(3)在直线l3: y=x-2上是否存在一点Q,过点Q向圆C引两切线,切点为E,F, 使△QEF为正三角形,若存在,求出点Q的坐标,若不存在,说明理由.