- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与圆的位置关系
- + 由直线与圆的位置关系求参数
- 求直线与圆交点的坐标
- 直线与圆相交的性质——韦达定理及应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系xOy中,已知圆C:
,直线l:
.
当
时,若圆C与直线l交于A,B两点,过点A,B分别作l的垂线与y轴交于D,E两点,求
的值;
过直线l上的任意一点P作圆的切线
为切点
,若平面上总存在定点N,使得
,求圆心C的横坐标的取值范围.









在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取值范围是( )
A.(-∞,-2![]() | B.[-2![]() ![]() |
C.[-![]() ![]() | D.(-∞,-2![]() ![]() |
已知圆M的方程为
,直线l的方程为
,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.

若
,试求点P的坐标;
求四边形PAMB面积的最小值及此时点P的坐标;
求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.







已知直线
,
,
是
的动点,过点
作
的垂线,线段
的中垂线交
于点
,
的轨迹为
.
(1)求轨迹
的方程;
(2)过
且与坐标轴不垂直的直线交曲线
于
两点,若以线段
为直径的圆与直线
相切,求直线
的方程.











(1)求轨迹

(2)过






已知抛物线
的焦点到准线的距离为
,直线
与抛物线
交于
两点,过这两点分别作抛物线
的切线,且这两条切线相交于点
.
(1)若
的坐标为
,求
的值;
(2)设线段
的中点为
,点
的坐标为
,过
的直线
与线段
为直径的圆相切,切点为
,且直线
与抛物线
交于
两点,求
的取值范围.







(1)若



(2)设线段











