- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断面面是否垂直
- 证明面面垂直
- + 补全面面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图(一),在直角梯形ABCP中,CP∥AB,CP⊥BC,AB=BC=
CP,D是CP的中点,将△PAD沿AD折起,使点P到达点P′的位置得到图(二),点M为棱P′C上的动点.
(1)当M在何处时,平面ADM⊥平面P′BC,并证明;
(2)若AB=2,∠P′DC=135°,证明:点C到平面P′AD的距离等于点P′到平面ABCD的距离,并求出该距离.

(1)当M在何处时,平面ADM⊥平面P′BC,并证明;
(2)若AB=2,∠P′DC=135°,证明:点C到平面P′AD的距离等于点P′到平面ABCD的距离,并求出该距离.

如图,边长为4的正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点.

(1)求证:PA//平面MBD.
(2)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由.

(1)求证:PA//平面MBD.
(2)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由.
如图,在三棱柱
中,底面ABC为正三角形,
底面ABC,
,点
在线段
上,平面
平面
.

(1)请指出点
的位置,并给出证明;
(2)若
,求
与平面ABE夹角的正弦值.








(1)请指出点

(2)若


如图,在四棱锥
中,底面ABCD为梯形,AB//CD,
,AB=AD=2CD=2,△ADP为等边三角形.

(1)当PB长为多少时,平面
平面ABCD?并说明理由;
(2)若二面角
大小为150°,求直线AB与平面PBC所成角的正弦值.



(1)当PB长为多少时,平面

(2)若二面角

如图,在长方体
中,
,
,
分别是面
,面
,面
的中心,
,
.

(1)求证:平面
平面
;
(2)求三棱锥
的体积;
(3)在棱
上是否存在点
,使得平面
平面
?如果存在,请求出
的长度;如果不存在,求说明理由.










(1)求证:平面


(2)求三棱锥

(3)在棱





在如图所示的几何体中,四边形ABCD为正方形,
平面ABCD,
,
,
.

(1)求证:
平面PAD;
(2)在棱AB上是否存在一点F,使得平面
平面PCE?如果存在,求
的值;如果不存在,说明理由.





(1)求证:

(2)在棱AB上是否存在一点F,使得平面


如图所示,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面
底面ABCD,且
,若E,F分别为PC,BD的中点.

(I)求证:EF//平面PAD;
(II)求三棱锥F-DEC的体积;
(III)在线段CD上是否存在一点G,使得平面
平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.



(I)求证:EF//平面PAD;
(II)求三棱锥F-DEC的体积;
(III)在线段CD上是否存在一点G,使得平面

如图所示,在四棱锥
中,底面
是
且边长为
的菱形,侧面
为正三角形,其所在平面垂直于底面
,若
为
的中点,
为
的中点.

(1)求证:
平面
;
(2)求证:
;
(3)在棱
上是否存在一点
,使平面
平面
,若存在,确定点
的位置;若不存在,说明理由











(1)求证:


(2)求证:

(3)在棱




