- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面是否垂直
- + 证明线面垂直
- 补全线面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,长方体ABCD﹣A1B1C1D1中,AB=BC=4,BB1=2
,点E、F、M分别为C1D1,A1D1,B1C1的中点,过点M的平面α与平面DEF平行,且与长方体的面相交,交线围成一个几何图形.

(1)在图1中,画出这个几何图形,并求这个几何图形的面积(不必说明画法与理由)
(2)在图2中,求证:D1B⊥平面DEF.


(1)在图1中,画出这个几何图形,并求这个几何图形的面积(不必说明画法与理由)
(2)在图2中,求证:D1B⊥平面DEF.
如图,梯形
所在的平面与等腰梯形
所在的平面互相垂直,
,
.
,
.
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)线段
上是否存在点
,使得
平面
?不需说明理由.






(1)求证:


(2)求二面角

(3)线段





如图,在四棱锥
中,四边形
为平行四边形,
,
为
中点,

(1)求证:
平面
;
(2)若
是正三角形,且
.
(Ⅰ)当点
在线段
上什么位置时,有
平面
?
(Ⅱ)在(Ⅰ)的条件下,点
在线段
上什么位置时,有平面
平面
?






(1)求证:


(2)若


(Ⅰ)当点




(Ⅱ)在(Ⅰ)的条件下,点




如图,边长为4的正方形
与矩形
所在平面互相垂直,
分别为
的中点,
.

(1)求证:
平面
;
(2)求证:
平面
;
(3)在线段
上是否存在一点
,使得
?若存在,求出
的长;若不存在,请说明理由.






(1)求证:


(2)求证:


(3)在线段




如图,在四棱锥
中,底面ABCD为菱形,
,Q为AD的中点,
.

(1)求证:
平面PQB;
(2)在线段PC上是否存在点M,使
平面MDB?若存在,求出点M的位置;若不存在,请说明理由.




(1)求证:

(2)在线段PC上是否存在点M,使

如图,四棱锥S-ABCD的底面是边长为2的正方形,每条侧棱的长都是底面边长的
倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小.


(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小.