刷题首页
题库
高中数学
题干
如图,在四棱锥
中,底面
ABCD
为菱形,
,
Q
为
AD
的中点,
.
(1)求证:
平面
PQB
;
(2)在线段
PC
上是否存在点
M
,使
平面
MDB
?若存在,求出点
M
的位置;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-24 01:43:33
答案(点此获取答案解析)
同类题1
在正方体
中,
是棱
的中点.
(1)求直线
与平面
所成角的大小(结果用反三角函数表示)
(2)在棱
上是否存在一点
,使得
平面
,若存在,指明点
的位置,若不存在,请说明理由.
同类题2
如图,在三棱锥
中,已知
是正三角形,
平面BCD,
,E为BC的中点,F在棱AC上,且
.
求三棱锥
的表面积;
求证
平面DEF;
若M为BD的中点,问AC上是否存在一点N,使
平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
同类题3
在四棱锥
中,底面ABCD是矩形,
平面ABCD,
,E,F是线段BC,AB的中点.
Ⅰ
证明:
;
Ⅱ
在线段PA上确定点G,使得
平面PED,请说明理由.
同类题4
如图,四边形
中,
,
,
,
,
,
分别在
,
上,
,现将四边形
沿
折起,使平面
平面
.
(Ⅰ)若
,在折叠后的线段
上是否存在一点
,且
,使得
平面
?若存在,求出
的值;若不存在,说明理由;
(Ⅱ)当三棱锥
的体积最大时,求二面角
的余弦值.
同类题5
如图,四边形
是梯形,四边形
是矩形,且平面
平面
,
,
,
是线段
上的动点.
(1)试确定点
的位置,使
平面
,并说明理由;
(2)在(1)的条件下,求平面
与平面
所成锐二面角的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
补全线面平行的条件
证明线面垂直