- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间点、直线、平面之间的位置关系
- 直线、平面平行的判定与性质
- + 直线、平面垂直的判定与性质
- 线面垂直的判定
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图1,在边长为2的菱形
中,
,
于点
,将
沿
折起到
的位置,使
,如图2.

(1)求证:
平面
;
(2)在线段
上是否存在点
,使平面
平面
?若存在,求
的值;若不存在,说明理由.









(1)求证:


(2)在线段





直四棱柱
中,
,
,E、F分别为棱AB、
上的点,
,
.求证:

(1)
平面
;
(2)线段AC上是否存在一点G,使面
面
.若存在,求出AG的长;若不存在,请说明理由.







(1)


(2)线段AC上是否存在一点G,使面


如图,在四棱锥
中,底面
是圆内接四边形,
,
,
.

(1)求证:平面
⊥平面
;
(2)若点
在平面
内运动,且
平面
,求直线
与平面
所成角的正弦值的最大值.






(1)求证:平面


(2)若点






已知在正四棱锥
中(底面为正方形,顶点在底面上的射影为底面中心的四棱锥),
,
,侧棱与底面所成角为
,侧面与底面所成角为
,侧面等腰三角形的底角为
,相邻两侧面的二面角为
,则下列说法正确的有( )







A.![]() | B.![]() |
C.![]() | D.![]() |