- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间点、直线、平面之间的位置关系
- 直线、平面平行的判定与性质
- + 直线、平面垂直的判定与性质
- 线面垂直的判定
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示1,已知四边形ABCD满足
,
,E是BC的中点.将
沿着AE翻折成
,使平面
平面AECD,F为CD的中点,如图所示2.

(1)求证:
平面
;
(2)求AE到平面
的距离.






(1)求证:


(2)求AE到平面

如图几何体是圆锥的一部分,它是Rt△ABC(及其内部)以一条直角边AB所在直线为旋转轴旋转150°得到的,AB=BC=2,P是弧
上一点,且EB⊥AP.

(1)求∠CBP的大小;
(2)若Q为AE的中点,D为弧
的中点,求二面角Q﹣BD﹣P的余弦值;
(3)直线AC上是否存在一点M,使得B、D、M、Q四点共面?若存在,请说明点M的位置;若不存在,请说明理由.


(1)求∠CBP的大小;
(2)若Q为AE的中点,D为弧

(3)直线AC上是否存在一点M,使得B、D、M、Q四点共面?若存在,请说明点M的位置;若不存在,请说明理由.
《九章算术》将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.下图所示的阳马
中,侧棱
底面ABCD,且
,则当点E在下列四个位置:PA中点、PB中点、PC中点、PD中点时分别形成的四面体
中,鳖臑有( )个.






A.0 | B.1 | C.2 | D.3 |