- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面平行
- + 证明线面平行
- 补全线面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,三棱柱
中,四边形
为菱形,
,平面
平面
,
在线段
上移动,
为棱
的中点.

(1)若
为线段
的中点,
为
中点,延长
交
于
,求证:
平面
;
(2)若二面角
的平面角的余弦值为
,求点
到平面
的距离.










(1)若









(2)若二面角




如图(1)是一正方体的表面展开图,MN和PB是两条面对角线,请在图(2)的正方体中将MN和PB画出来,并就这个正方体解决下面问题。
(1)求证:MN∥平面PBD;
(2)求证:
平面
;
(3)求PB和平面NMB所成的角的大小.

(1)求证:MN∥平面PBD;
(2)求证:


(3)求PB和平面NMB所成的角的大小.


如图,四边形ABCD为正方形,
平面ABCD,E、F分别为BC和PC的中点
(1)求证:EF//平面PBD;
(2)如果AB=PD,求EF与平面ABCD所成角的正切值

(1)求证:EF//平面PBD;
(2)如果AB=PD,求EF与平面ABCD所成角的正切值
