- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面平行
- + 证明线面平行
- 补全线面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,几何体
由一个正三棱柱截去一个三棱锥而得,
,
,
,
平面
,
为
的中点,
为棱
上一点,且
平面
.
(1)若
在棱
上,且
,证明:
平面
;
(2)过
作平面
的垂线,垂足为
,确定
的位置(说明作法及理由),并求线段
的长.












(1)若





(2)过






如图,在三棱柱
中,平面
平面
,四边形
为菱形,点
是棱
上不同于
,
的点,平面
与棱
交于点
,
,
,
.
(Ⅰ)求证:
∥平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)若二面角
为
,求
的长.














(Ⅰ)求证:


(Ⅱ)求证:


(Ⅲ)若二面角




如图,
为圆
的直径,点
在圆
上,且
,矩形
所在的平面和圆
所在的平面垂直,且
.
(1)求证:平面
平面
;
(2)在线段
上是否存在了点
,使得
平面
?并说明理由.








(1)求证:平面


(2)在线段




