刷题首页
题库
高中数学
题干
如图①,△
ABC
是以
AC
为斜边的等腰直角三角形,△
BCD
是等边三角形.如图②,将△
BCD
沿
BC
折起,使平面
BCD
⊥平面
ABC
,记
BC
的中点为
E
,
BD
的中点为
M
,点
F
、
N
在棱
AC
上,且
AF
=3
CF
,
C
.
(1)试过直线
MN
作一平面,使它与平面
DEF
平行,并加以证明;
(2)记(1)中所作的平面为α,求平面α与平面
BMN
所成锐二面角的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-28 08:43:06
答案(点此获取答案解析)
同类题1
在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB=
,EF=1,BC=
,且M是BD的中点.
(1)求证:EM∥平面ADF;
(2)求二面角D-AF-B的余弦值;
(3)在线段ED上是否存在一点P,使得BP∥平面ADF?若存在,求出EP的长度;若不存在,请说明理由.
同类题2
如图,四边形
是梯形,四边形
是矩形,且平面
平面
,
,
,
是线段
上的动点.
(1)试确定点
的位置,使
平面
,并说明理由;
(2)在(1)的条件下,求平面
与平面
所成锐二面角的余弦值.
同类题3
如图甲,在直角梯形
中,
,
,
,
是
的中点. 现沿
把平面
折起,使得
(如图乙所示),
、
分别为
、
边的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)在
上找一点
,使得
平面
.
同类题4
如图,四棱锥
中,
底面
,
,底面
是直角梯形,
.
(Ⅰ)求证:平面
平面
;
(Ⅱ)在棱
上是否存在一点
,使
//平面
?若存在,请确定
点的位置;若不存在,请说明理由.
同类题5
如图,四棱锥
的底面ABCD是正方形,
为等边三角形,M,N分别是AB,AD的中点,且平面
平面ABC
A.
证明:
平面PNB;
设点E是棱PA上一点,若
平面DEM,求
.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
补全线面平行的条件