- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体
- + 点、直线、平面之间的位置关系
- 空间点、直线、平面之间的位置关系
- 直线、平面平行的判定与性质
- 直线、平面垂直的判定与性质
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,
,EA=EB=AB=1,PA=
,连接CE并延长交AD于F.
(1)求证:AD⊥平面CFG;
(2)求平面BCP与平面DCP的夹角的余弦值.



(1)求证:AD⊥平面CFG;
(2)求平面BCP与平面DCP的夹角的余弦值.

如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕,将△ADE向上折起,使D到P,且PC=PB

(1)求证:PO⊥面ABCE;
(2)求AC与面PAB所成角
的正弦值.

(1)求证:PO⊥面ABCE;
(2)求AC与面PAB所成角

如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕将
△ADE向上折起,使D到P,且PC=PB
(1)求证:PO⊥面ABCE.
(2)求AC与面PAB所成角θ的正弦值.

.
△ADE向上折起,使D到P,且PC=PB
(1)求证:PO⊥面ABCE.
(2)求AC与面PAB所成角θ的正弦值.

.
已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(I)求证:EF⊥平面PAD;
(II)求平面EFG与平面ABCD所成锐二面角的大小.
(I)求证:EF⊥平面PAD;
(II)求平面EFG与平面ABCD所成锐二面角的大小.

如图1,在
中,
,
,
,
,
分别是
,
上的点,且
,
,将
沿
折起到
的位置,使
,如图2.

(1)求证:
平面
;
(2)线段
上是否存在一点
,使得平面
与平面
成
的角?若存在,求出
的值;若不存在,请说明理由.















(1)求证:


(2)线段






如图,在四边形
中,
,
,点
为线段
上的一点.现将
沿线段
翻折到
(点
与点
重合),使得平面
平面
,连接
,
.

(Ⅰ)证明:
平面
;
(Ⅱ)若
,且点
为线段
的中点,求二面角
的大小.
















(Ⅰ)证明:


(Ⅱ)若




如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,
∠BAD=120°,PA=
,∠ACB=90°,M是线段PD上的一点(不包括端点).

(1)求证:BC⊥平面PAC;
(2)求异面直线AC与PD所成的角的余弦值;
(3)若点M为侧棱PD中点,求直线MA与平面PCD所成角的正弦值.
∠BAD=120°,PA=


(1)求证:BC⊥平面PAC;
(2)求异面直线AC与PD所成的角的余弦值;
(3)若点M为侧棱PD中点,求直线MA与平面PCD所成角的正弦值.