- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- 多面体与球体内切外接问题
- + 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB//DC,AB=2CD,∠BCD=90°.

(1)求证:AD⊥PB;
(2)求点C到平面PAB的距离.

(1)求证:AD⊥PB;
(2)求点C到平面PAB的距离.
下图是古希腊数学家阿基米德用平衡法求球的体积所用的图形.此图由正方形
、半径为
的圆及等腰直角三角形构成,其中圆内切于正方形,等腰三角形的直角顶点与
的中点
重合,斜边在直线
上.已知
为
的中点,现将该图形绕直线
旋转一周,则阴影部分旋转后形成的几何体积为( )










A.![]() | B.![]() | C.![]() | D.![]() |
如图,在多面体
中,平面
平面
,四边形
为正方形,四边形
为梯形,且
,
,
,
.

(1)求证:
;
(2)若
为线段
的中点,求证:
平面
;
(3)求多面体
的体积.










(1)求证:

(2)若




(3)求多面体

如图所示,在四棱锥P-ABCD中,四边形ABCD为平行四边形,△PCD为正三角形,∠BAD=30°,AD=4,AB=2
,平面PCD⊥平面ABCD,E为PC中点.

(1)证明:BE⊥PC;
(2)求多面体PABED的体积.


(1)证明:BE⊥PC;
(2)求多面体PABED的体积.
鲁班锁起源于中国古代建筑中首创的榫卯结构,相传由春秋时代鲁国工匠鲁班所作. 下图是经典的六柱鲁班锁及六个构件的图片,下图是其中一个构件的三视图,则此构件的体积为




A.![]() | B.![]() |
C.![]() | D.![]() |