- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- 多面体与球体内切外接问题
- + 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
学生到工厂劳动实践,利用
打印技术制作模型.如图,该模型为长方体
挖去四棱锥
后所得的几何体,其中
为长方体的中心,
分别为所在棱的中点,
,
打印所用原料密度为
,不考虑打印损耗,制作该模型所需原料的质量为___________
.










如图,棱长为1(单位:
)的正方体木块经过适当切割,得到几何体
,已知几何体
由两个底面相同的正四棱锥组成,底面
平行于正方体的下底面,且各顶点均在正方体的面上,则几何体
体积的取值范围是________(单位:
). 







被嘉定著名学者钱大昕赞誉为“国朝算学第一”的清朝数学家梅文鼎曾创造出一类“方灯体”,“灯者立方去其八角也”,如图所示,在棱长为
的正方体
中,点
为棱上的四等分点.

(1)求该方灯体的体积;
(2)求直线
和
的所成角;
(3)求直线
和平面
的所成角.




(1)求该方灯体的体积;
(2)求直线


(3)求直线


如图,在以
,
,
,
,
,
为顶点的五面体中,
在平面
上的射影为
的中点
是边长为
的正三角形,直线
与平面
所成角为
.

(I)求证:
;
(Ⅱ)若
,且
,求该五面体的体积.















(I)求证:

(Ⅱ)若


如图所示,在长方体
中,已知
,
.

(1)求:凸多面体
的体积;
(2)若
为线段
的中点,求点
到平面
的距离;
(3)若点
、
分别在棱
、
上滑动,且线段
的长恒等于
,线段
的中点为
①试证:点
必落在过线段
的中点
且平行于底面
的平面上;
②试求点
的轨迹.




(1)求:凸多面体

(2)若




(3)若点








①试证:点




②试求点
