- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- 多面体与球体内切外接问题
- + 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图1,等腰
中,
,
,点
,
,
为线段
的四等分点,且
.现沿
,
,
折叠成图2所示的几何体,使
.

(图1)

(图2)
(1)证明:
平面
;
(2)求几何体
的体积.













(图1)

(图2)
(1)证明:


(2)求几何体

我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈;上底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为( )


A.13.25立方丈 | B.26.5立方丈 | C.53立方丈 | D.106立方丈 |
如图,AB为圆O的直径,点E、F在圆O上,
,矩形ABCD所在平面和圆O所在的平面互相垂直,已知
,
.
(1)求证:平面
平面
;
(2)设几何体
、
的体积分别为
、
,求
.



(1)求证:平面


(2)设几何体






古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“臼”多用石头或木头制成.一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为( )


A.63π | B.72π |
C.79π | D.99π |