- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- + 多面体与球体内切外接问题
- 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我国古代数学名著《九章算术•商功》中阐述:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,对该几何体有如下描述:
①四个侧面都是直角三角形;
②最长的侧棱长为
;
③四个侧面中有三个侧面是全等的直角三角形;
④外接球的表面积为24π.
其中正确的描述为____ .
①四个侧面都是直角三角形;
②最长的侧棱长为

③四个侧面中有三个侧面是全等的直角三角形;
④外接球的表面积为24π.
其中正确的描述为

我国古达数学名著《九章算术-商功》中阐述:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,一为鳖觸,阳马居二,鳖属居一.不易之率也.合两鳖觸三而一,验之以基,其形露矣,”若称为“阳马”的某几何体的三视图如图所示 图中网格纸上小正方形的边长为
. 则对该儿何体描述:

①四个侧面首饰直角三角形
②最长的侧棱长为
③四个侧面中有三个侧面是全等的直角三角形
④外接球的表面积为
其中正确的个数为( )


①四个侧面首饰直角三角形
②最长的侧棱长为

③四个侧面中有三个侧面是全等的直角三角形
④外接球的表面积为

其中正确的个数为( )
A.![]() | B.![]() | C.![]() | D.![]() |
正三棱锥P-ABC(底面△ABC为正三角形,顶点P在底面的射影为底面ABC的中心)中,PA丄PB,其体积为
,则该三棱锥的外接球的表面积为_______

如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即樟卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四校柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱的高为______ .
