- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 柱、锥、台的表面积
- 柱、锥、台的体积
- 球的体积和表面积
- + 组合体的表面积和体积
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- 多面体与球体内切外接问题
- 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点A是以BC为直径的圆O上异于B,C的动点,P为平面ABC外一点,且平面PBC⊥平面ABC,BC=3,PB=2
,PC
,则三棱锥P﹣ABC外接球的表面积为______ .


某几何体的三视图如图所示,其中主视图和左视图都是边长为
的正方形,俯视图中的曲线是半径为
的
圆弧,则该几何体的体积为( )





A.![]() | B.![]() |
C.![]() | D.![]() |
点A,B,C,D在同一个球的球面上,AB=BC=
,∠ABC=90°,若四面体ABCD体积的最大值为3,则这个球的表面积为

A.![]() | B.![]() | C.![]() | D.![]() |
我国南北朝时期数学家、天文学家祖暅提出了著名的祖暅原理:“幂势既同,则积不容异”
其中“幂”即是截面积,“势”是几何体的高,意思是两等高立方体,若在每一等高处的截面积都相等,则两立方体的体积相等,已知某不规则几何体与如图所示的几何体满足“幂势同”,则该不规则几何体的体积为






A.![]() | B.![]() | C.![]() | D.![]() |