- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 柱体体积的有关计算
- + 锥体体积的有关计算
- 台体体积的有关计算
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知等腰三角形的周长为
,问绕这个三角形的底边所在直线旋转一周所形成的几何体的体积最大时,这个三角形的底边长为_________________.

在正三棱锥
内,有一半球,其底面与正三棱锥的底面重合,且与正正三棱锥的三个侧面都相切,若半球的半径为
,则正三棱锥的体积最小时,其高等于______.


如图,圆形纸片的圆心为
,半径为
,该纸片上的正方形
的中心为
,
为圆
上的点,
分别是以
为底边的等腰三角形,沿虚线剪开后,分别以
为折痕折起
,使
重合得到一个四棱锥,则该四棱锥的体积的最大值为_______. 













