- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 柱体体积的有关计算
- + 锥体体积的有关计算
- 台体体积的有关计算
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,正方体
的棱长为1,
分别是棱
的中点,过直线
的平面分别与棱
交于
,设
,
,给出以下四个命题:
①
②当且仅当
时,四边形
的面积最小;
③四边形
周长
,
,则
是奇函数;
④四棱锥
的体积
为常函数;
其中正确命题的个数为( )








①

②当且仅当


③四边形




④四棱锥


其中正确命题的个数为( )
A.1个 | B.2个 | C.3个 | D.4个 |
正四棱锥S-ABCD的底面边长为2,侧棱长为x.
(1)求出其表面积S(x)和体积V(x);
(2)设
,求出函数
的定义域,并判断其单调性(无需证明).
(1)求出其表面积S(x)和体积V(x);
(2)设


如图,圆形纸片的圆心为O,半径为5,该纸片上的等边三角形ABC的中心为O,点D,E,F为圆O上的点,
,
,
分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起
,
,
,使得D,E,F重合于P,得到三棱锥
.

(1)当
时,求三棱锥
的体积;
(2)当
的边长变化时,三棱锥
的侧面和底面所成二面角为
,求
的取值范围.









(1)当


(2)当




如图,圆形纸片的圆心为
,半径为
,该纸片上的正方形
的中心为
,
、
、
、
为圆
上点,
,
,
,
分别是以
,
,
,
为底边的等腰三角形,沿虚线剪开后,分别以
,
,
,
为折痕折起
,
,
,
,使得
、
、
、
重合,得到四棱锥.当该四棱锥体积取得最大值时,正方形
的边长为______
.
































已知P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,
,点B在AC上的射影为D,则三棱锥
体积的最大值为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图有一个帐篷,它下部的形状是高为
(单位:米)的正六棱柱,上部的形状是侧棱长为
(单位:米)的正六棱锥.则帐篷的体积最大值为_____立方米.



在边长为
的等边三角形
中,点
分别是边
上的点,满足
且
,将
沿直线
折到
的位置. 在翻折过程中,下列结论成立的是( )










A.在边![]() ![]() ![]() ![]() |
B.存在![]() ![]() ![]() |
C.若![]() ![]() ![]() |
D.在翻折过程中,四棱锥![]() ![]() ![]() ![]() |