在直三棱柱中,的中点,上一点.

(1)当时,证明:平面
(2)若,求三棱锥的体积.
当前题号:1 | 题型:解答题 | 难度:0.99
一个空间几何体的三视图如图,则该几何体的体积为(    )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
已知四棱锥中,底面是直角梯形,,且的交点,点在平面内的投影为点.

(1)求证:
(2)若,求三棱锥的体积.
当前题号:3 | 题型:解答题 | 难度:0.99
如图,在边长为8的菱形中,,点分别是边的四等分点,交于点,沿翻折到,连接,得到如图的五棱锥,且与底面所成角的正弦值为.

(1)求证:平面
(2)求四棱锥的体积.
当前题号:4 | 题型:解答题 | 难度:0.99
如图,是正方形,平面,平面,

(1)求证:
(2)若三棱锥的体积为,几何体的体积为,且,求的值.
当前题号:5 | 题型:解答题 | 难度:0.99
某四棱锥的正视图与俯视图如图所示,设有下面四个结论
:该四棱锥的体积为:该四棱锥的最长侧棱与底面所成角为45°;
:该四棱锥的体积为:该四棱锥的最长侧棱与底面所成角为30°
其中的正确结论为(   )
A.B.C.D.
当前题号:6 | 题型:单选题 | 难度:0.99
如图,三棱柱中,底面,点是棱的中点,.

(Ⅰ)求证://平面
(Ⅱ)求点到平面的距离.
当前题号:7 | 题型:解答题 | 难度:0.99
如图,在四棱锥中,分别为棱的中点,,且.

(1)证明:平面平面.
(2)若四棱锥的高为3,求该四棱锥的体积.
当前题号:8 | 题型:解答题 | 难度:0.99
已知四棱锥中,平面平面,.

(1)若,求四棱锥的体积;
(2)证明:在线段上存在一点,使得平面.
当前题号:9 | 题型:解答题 | 难度:0.99