- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 棱锥的结构特征和分类
- 判断几何体是否为棱锥
- 正棱锥及其有关计算
- 棱锥的展开图
- 棱锥中截面的有关计算
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给出下列几个命题:
①棱柱的侧棱都相等,侧面都是全等的平行四边形;
②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;
③存在每个面都是直角三角形的四面体;
④棱台的侧棱延长后交于一点.
其中正确命题的序号是________ .
①棱柱的侧棱都相等,侧面都是全等的平行四边形;
②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;
③存在每个面都是直角三角形的四面体;
④棱台的侧棱延长后交于一点.
其中正确命题的序号是
下列结论,其中正确的个数是( )
①梯形的直观图可能是平行四边形
②三棱锥中,四个面都可以是直角三角形
③如果一个棱锥的各个侧面都是等边三角形,这个棱锥不可能是六棱锥
④底面是矩形的平行六面体是长方体.
①梯形的直观图可能是平行四边形
②三棱锥中,四个面都可以是直角三角形
③如果一个棱锥的各个侧面都是等边三角形,这个棱锥不可能是六棱锥
④底面是矩形的平行六面体是长方体.
A.1 | B.2 | C.3 | D.4 |
下列命题中正确的个数是()
①由五个面围成的多面体只能是三棱柱;
②用一个平面去截棱锥便可得到棱台;
③仅有一组对面平行的五面体是棱台;
④有一个面是多边形,其余各面是三角形的几何体是棱锥.
①由五个面围成的多面体只能是三棱柱;
②用一个平面去截棱锥便可得到棱台;
③仅有一组对面平行的五面体是棱台;
④有一个面是多边形,其余各面是三角形的几何体是棱锥.
A.0个 | B.1个 |
C.2个 | D.3个 |
下列命题中正确的有__________.
①有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;
②存在一个四个侧面都是直角三角形的四棱锥;
③如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形;
④圆台的任意两条母线所在直线必相交;
①有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;
②存在一个四个侧面都是直角三角形的四棱锥;
③如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形;
④圆台的任意两条母线所在直线必相交;
有下面三组定义:
有两个面平行,其余各面都是四边形,且相邻四边形的公共边都互相平行的几何体叫棱柱;
用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;
有一个面是多边形,其余各面都是三角形的几何体是棱锥.
其中正确定义的个数是




其中正确定义的个数是


A.0 | B.1 | C.2 | D.3 |
根据下列对几何体结构特征的描述,说出几何体的名称.
(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;
(2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的几何体;
(3)由五个面围成,其中一个面是正方形,其他各面都是有一个公共顶点的全等三角形;
(4)一个圆绕其一条直径所在的直线旋转180°形成的封闭曲面所围成的几何体.
(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;
(2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的几何体;
(3)由五个面围成,其中一个面是正方形,其他各面都是有一个公共顶点的全等三角形;
(4)一个圆绕其一条直径所在的直线旋转180°形成的封闭曲面所围成的几何体.
根据下面对几何体结构特征的描述,说出几何体的名称.
(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.
(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.
(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.
(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.