- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 棱柱的结构特征和分类
- 判断几何体是否为棱柱
- + 正棱柱及其有关计算
- 棱柱的展开图及最短距离问题
- 判断正方体的截面形状
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知正方体
的体积为1,点
在线段
上(点
异于
、
两点),点
为线段
的中点,若平面
截正方体
所得的截面为四边形,则线段
的取值范围为( )











A.![]() | B.![]() | C.![]() | D.![]() |
《九章算术》是我国古代内容极为丰富的数学名著,书中由一道著名的“引葭赴氨”问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思为:“今有水池
丈见方(即
尺),芦苇生长在水的中央,长处水面的部分为
尺.将芦苇向池岸牵引,恰巧与水岸齐接(如图所示),问水深、芦苇的长度各是多少?”现假设
,则
( )







A.![]() | B.![]() | C.![]() | D.![]() |
正方体
的棱长为
,点
,
,
分别是
、
、
的中点,以
为底面作正三棱柱,若次三棱柱另一底面的三个顶点也都在该正方体的表面上,则这个正三棱锥的高为( ).









A.![]() | B.![]() | C.![]() | D.![]() |