- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 棱柱的结构特征和分类
- 判断几何体是否为棱柱
- 正棱柱及其有关计算
- 棱柱的展开图及最短距离问题
- 判断正方体的截面形状
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在立体几何中,下列结论一定正确的是_______.(请填所有正确结论的序号)
①一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱;
②用一个平面去截棱锥,得到两个几何体,一个仍然是棱锥,另一个我们称为棱台;
③将直角三角形绕着它的一边所在的直线旋转一周,形成的几何体叫做圆锥;
④将直角梯形绕着它的垂直于底边的腰所在的直线旋转一周,形成的几何体叫做圆台.
①一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱;
②用一个平面去截棱锥,得到两个几何体,一个仍然是棱锥,另一个我们称为棱台;
③将直角三角形绕着它的一边所在的直线旋转一周,形成的几何体叫做圆锥;
④将直角梯形绕着它的垂直于底边的腰所在的直线旋转一周,形成的几何体叫做圆台.
根据下列对几何体结构特征的描述,说出几何体的名称.
(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;
(2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的几何体;
(3)由五个面围成,其中一个面是正方形,其他各面都是有一个公共顶点的全等三角形;
(4)一个圆绕其一条直径所在的直线旋转180°形成的封闭曲面所围成的几何体.
(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;
(2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的几何体;
(3)由五个面围成,其中一个面是正方形,其他各面都是有一个公共顶点的全等三角形;
(4)一个圆绕其一条直径所在的直线旋转180°形成的封闭曲面所围成的几何体.
从正方体的8个顶点中选取4个,连接成一个四面体,则这个四面体可能为:①每个面都是直角三角形,②每个面都是等边三角形,③有且只有一个面是直角三角形,④有且只有一个面是等边三角形,其中正确的说法有_________(写出所有正确结论的编号)
下列命题中,正确的是 ( )
A.经过正方体任意两条面对角线,有且只有一个平面 |
B.经过正方体任意两条体对角线,有且只有一个平面 |
C.经过正方体任意两条棱,有且只有一个平面 |
D.经过正方体任意一条体对角线与任意一条面对角线,有且只有一个平面 |
给出下列说法:
①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;
②有一个面是多边形,其余各面都是三角形的几何体是棱锥;
③棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确说法的个数是( )
①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;
②有一个面是多边形,其余各面都是三角形的几何体是棱锥;
③棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确说法的个数是( )
A.0 | B.1 | C.2 | D.3 |
根据下面对几何体结构特征的描述,说出几何体的名称.
(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.
(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.
(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.
(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.