- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 棱柱的结构特征和分类
- 判断几何体是否为棱柱
- 正棱柱及其有关计算
- 棱柱的展开图及最短距离问题
- 判断正方体的截面形状
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给出下列命题:
①棱柱的侧棱都相等,侧面都是全等的平行四边形;②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④若四棱柱有两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;⑤存在每个面都是直角三角形的四面体;⑥棱台的侧棱延长后交于一点.其中正确命题的序号是
①棱柱的侧棱都相等,侧面都是全等的平行四边形;②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④若四棱柱有两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;⑤存在每个面都是直角三角形的四面体;⑥棱台的侧棱延长后交于一点.其中正确命题的序号是
A.①②③④ | B.②③④⑤ |
C.③④⑤⑥ | D.①②③④⑤⑥ |
现有一个正四面体与一个正四棱锥,它们的所有棱长都相等.将它们重叠一个侧面后,所得的几何体是( ).
A.四面体 | B.五面体 | C.六面体 | D.七面体 |
正方体
的棱长为
,点
,
,
分别是
、
、
的中点,以
为底面作正三棱柱,若此三棱柱另一底面的三个顶点也都在该正方体的表面上,则这个正三棱柱的高为__________ .









如图,一个封闭的长方体,它的六个表面各标出
这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已表明,则字母
对面的字母依次分别为( )




A.![]() | B.![]() | C.![]() | D.![]() |
如图,透明塑料制成的长方体ABCD﹣A1B1C1D1内灌进一些水,固定容器底面一边BC于水平地面上,再将容器倾斜,随着倾斜度不同,有下面五个命题:
①有水的部分始终呈棱柱形;
②没有水的部分始终呈棱柱形;
③水面EFGH所在四边形的面积为定值;
④棱A1D1始终与水面所在平面平行;
⑤当容器倾斜如图(3)所示时,BE•BF是定值.
其中所有正确命题的序号是 ____.
①有水的部分始终呈棱柱形;
②没有水的部分始终呈棱柱形;
③水面EFGH所在四边形的面积为定值;
④棱A1D1始终与水面所在平面平行;
⑤当容器倾斜如图(3)所示时,BE•BF是定值.
其中所有正确命题的序号是 ____.

下列说法正确的是( )
A.棱柱被平面分成的两部分可以都是棱柱 | B.底面是矩形的平行六面体是长方体 |
C.棱柱的底面一定是平行四边形 | D.棱锥的底面一定是三角形 |
给出下列命题:
①棱柱的侧棱都相等,侧面都是全等的平行四边形;
②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;
③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;
④棱台的侧棱延长后交于一点,侧面是等腰梯形.
其中正确命题的序号是( )
①棱柱的侧棱都相等,侧面都是全等的平行四边形;
②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;
③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;
④棱台的侧棱延长后交于一点,侧面是等腰梯形.
其中正确命题的序号是( )
A.①②③④ | B.①②③ | C.②③ | D.③ |
如图所示的长方体,将其左侧面作为上底面,右侧面作为下底面,水平放置,所得的几何体是( )


A.棱柱 | B.棱台 |
C.棱柱与棱锥组合体 | D.无法确定 |