- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 空间几何体的结构
- 棱柱
- 棱锥
- 棱台
- 圆柱
- 圆锥
- 圆台
- 球
- 旋转体
- 多面体
- 组合体
- 空间几何体的三视图和直观图
- 空间几何体的表面积与体积
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列命题中,正确的序号是_____
①直线上有两个点到平面的距离相等,则这条直线和这个平面平行;
②过球面上任意两点的大圆有且只有一个;
③直四棱柱是直平行六面体;
④
为异面直线,则过
且与
平行的平面有且仅有一个;
⑤两相邻侧面所成角相等的棱锥是正棱锥.
①直线上有两个点到平面的距离相等,则这条直线和这个平面平行;
②过球面上任意两点的大圆有且只有一个;
③直四棱柱是直平行六面体;
④



⑤两相邻侧面所成角相等的棱锥是正棱锥.
如图:圆锥底面半径为
,高为
.

(1)求圆锥内接圆柱(一底面在圆锥底面上,另一底面切于圆锥侧面)侧面积的最大值;
(2)圆锥内接圆柱的全面积是否存在最大值?说明理由;



(1)求圆锥内接圆柱(一底面在圆锥底面上,另一底面切于圆锥侧面)侧面积的最大值;
(2)圆锥内接圆柱的全面积是否存在最大值?说明理由;
如图,设
是棱长为
的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体,则关于此多面体有以下结论:①有
个顶点;②有
条棱;③有
个面;④表面积为
;⑤体积为
.其中正确的结论是____________.(要求填上所有正确结论的序号)








如图为某一几何体的展开图,其中
是边长为
的正方形,
,点
及
共线.

(1)沿图中虚线将它们折叠起来,使
四点重合,请画出其直观图,试问需要几个这样的几何体才能拼成一个棱长为
的正方体
?
(2)设正方体
的棱
的中点为
,求平面
与平面
所成二面角(锐角)的余弦值.
(3)在正方体
的
边上是否存在一点
,使得
点到平面
的距离为
,若存在,求出
的值;若不存在,请说明理由.







(1)沿图中虚线将它们折叠起来,使



(2)设正方体





(3)在正方体







下列叙述中,错误的一项为( )
A.棱柱的面中,至少有两个面相互平行 |
B.棱柱的各个侧面都是平行四边形 |
C.棱柱的两底面是全等的多边形 |
D.棱柱中两个互相平行的平面一定是棱柱的底面 |