- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 空间几何体
- 空间几何体的结构
- 空间几何体的三视图和直观图
- 空间几何体的表面积与体积
- 点、直线、平面之间的位置关系
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
正方体
(棱长为1)中,点P在线段
上(点P异于A、D两点),线段
的中点为点Q,若平面
截该正方体所得的截面为四边形,则线段
的取值范围为( )





A.![]() | B.![]() | C.![]() | D.![]() |
如果一个凸多面体的每个面都是全等的正多边形,而且每个顶点都引出相同数目的棱,那么这个凸多面体叫做正多面体.古希腊数学家欧几里得在其著作《几何原本》的卷13中系统地研究了正多面体的作图,并证明了每个正多面体都有外接球.若正四面体、正方体、正八面体的外接球半径相同,则它们的棱长之比为( )


A.![]() | B.![]() | C.![]() | D.![]() |
下列结论正确的是( )
A.各个面都是三角形的几何体是三棱锥 |
B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥 |
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥 |
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线 |