- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- + 基本不等式求积的最大值
- 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在半径为
的半圆形(
为圆心)铝皮上截取一块矩形材料
,其中
,
在直径上,点
,
在圆周上.

(1)设
,将矩形
的面积
表示成
的函数,并写出其定义域;
(2)怎样截取,才能使矩形材料
的面积最大?并求出最大面积.








(1)设




(2)怎样截取,才能使矩形材料

两城市
和
相距
,现计划在两城市外以
为直径的半圆
上选择一点
建造垃圾处理场,其对城市的影响度与所选地点到城市的距离有关,对城
和城
的总影响度为城
和城
的影响度之和,记
点到城
的距离为
,建在
处的垃圾处理场对城
和城
的总影响度为
,统计调查表明:垃圾处理场对城
的影响度与所选地点到城
的距离的平方成反比,比例系数为4,对城
的影响度与所选地点到城
的距离的平方成反比,比例系数为
,当垃圾处理场建在
的中点时,对城
和城
的总影响度为0.065;

(1)将
表示成
的函数;
(2)判断
上是否存在一点,使建在此处的垃圾处理场对城
和城
的总影响度最小?若存在,求出该点到城
的距离;若不存在,说明理由;


























(1)将


(2)判断



