刷题首页
题库
高中数学
题干
两城市
和
相距
,现计划在两城市外以
为直径的半圆
上选择一点
建造垃圾处理场,其对城市的影响度与所选地点到城市的距离有关,对城
和城
的总影响度为城
和城
的影响度之和,记
点到城
的距离为
,建在
处的垃圾处理场对城
和城
的总影响度为
,统计调查表明:垃圾处理场对城
的影响度与所选地点到城
的距离的平方成反比,比例系数为4,对城
的影响度与所选地点到城
的距离的平方成反比,比例系数为
,当垃圾处理场建在
的中点时,对城
和城
的总影响度为0.065;
(1)将
表示成
的函数;
(2)判断
上是否存在一点,使建在此处的垃圾处理场对城
和城
的总影响度最小?若存在,求出该点到城
的距离;若不存在,说明理由;
上一题
下一题
0.99难度 解答题 更新时间:2020-02-13 12:18:22
答案(点此获取答案解析)
同类题1
某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m
2
的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为
(m),三块种植植物的矩形区域的总面积为
(m
2
).
(1)求
关于
的函数关系式;
(2)求
的最大值.
同类题2
上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求
),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是
元.
(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.
同类题3
某小区有一块三角形空地,如图△
ABC
,其中
AC
=180米,
BC=
90米,∠
C
=90°,开发商计划在这片空地上进行绿化和修建运动场所,在△
ABC
内的
P
点处有一服务站(其大小可忽略不计),开发商打算在
AC
边上选一点
D
,然后过点
P
和点
D
画一分界线与边
AB
相交于点
E
,在△
ADE
区域内绿化,在四边形
BCDE
区域内修建运动场所. 现已知点
P
处的服务站与
AC
距离为10米,与
BC
距离为100米. 设
米,试问
取何值时,运动场所面积最大?
同类题4
某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为
元时,销售量可达到
万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:
(1)每套丛书售价定为100元时,书商所获得的总利润是多少万元?
(2)每套丛书售价定为多少元时,单套丛书的利润最大?
同类题5
榆林市政府坚持保护环境和节约资源,坚持推进生态文明建设。若市财政局下拨专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金
(单位:百万元)的函数
(单位:百万元):
,处理污染项目五年内带来的生态收益可表示为投放资金
单位:(单位:百万元)的函数
(单位:百万元):
。
(1)设分配给植绿护绿项目的资金为
(百万元),则两个生态项目五年内带来的收益总和为
y
,写出
y
关于
的函数解析式和定义域;
(2)试求出
y
的最大值,并求出此时对两个生态项目的投资分别为多少?
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分式型函数模型的应用
基本不等式求积的最大值