刷题首页
题库
高中数学
题干
如图,在半径为
的半圆形(
为圆心)铝皮上截取一块矩形材料
,其中
,
在直径上,点
,
在圆周上.
(1)设
,将矩形
的面积
表示成
的函数,并写出其定义域;
(2)怎样截取,才能使矩形材料
的面积最大?并求出最大面积.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 09:42:49
答案(点此获取答案解析)
同类题1
著名英国数字家和物理字家lssacNewton曾提出了物体在常温环境下温度变化的冷却模型:把物体放在冷空气中冷却,如果物体的初始温度为
,空气的温度为
分钟后物体的温度
可甶公式
得到,这里
是自然对数的底,
是一个由物体与空气的接触状況而定的正的常数,先将一个初始温度为62
的物体放在15
的空气中冷却,1分钟后物体的温度是52
.
(1)求
的值(精确到0.01);
(2)该物体从最初的62
冷却多少分钟后温度是32
(精确到0.1)?
同类题2
热力公司为某生活小区铺设暖气管道,为减少热量损耗,管道外表需要覆盖保温层.经测算要覆盖可使用20年的保温层,每厘米厚的保温层材料成本为2万元,小区每年的气量损耗用
(单位:万元)与保温层厚度
(单位:
)满足关系:
若不加保温层,每年热量损耗费用为5万元.设保温费用与20年的热量损耗费用之和为
.
(1)求
的值及
的表达式;
(2)问保温层多厚时,总费用
最小,并求最小值.
同类题3
火车驶出
站
后,以
的速度行驶了
,用解析式将这段时间内火车与
站的距离
表示成时间
的函数,则
______.
同类题4
加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at
2
+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为()
A.3.50分钟
B.3.75分钟
C.4.00分钟
D.4.25分钟
同类题5
设某物体一天中的温度
是时间
的函数,已知
,其中温度的单位是
,时间的单位是小时,规定中午12:00相应的
,中午12:00以后相应的
取正数,中午12:00以前相应的
取负数(例如早上8:00相应的
,下午16:00相应的
),若测得该物体在中午12:00的温度为
,在下午13:00的温度为
,且已知该物体的温度在早上8:00与下午16:00有相同的变化率.
(1)求该物体的温度
关于时间
的函数关系式;
(2)该物体在上午10:00至下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少?
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
利用给定函数模型解决实际问题
基本不等式求积的最大值