- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- + 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
同学们有如下解题经验:在某些数列求和中,可把其中一项分裂为两项之差,使某些项可以抵消,从而实现化简求和.如:已知数列{an}的通项
,则将其通项化为
,故数列{an}的前n项的和
.斐波那契数列是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,
,若a2021=a,那么S2019=_____.




若数列
同时满足条件:①存在互异的
使得
(
为常数);
②当
且
时,对任意
都有
,则称数列
为双底数列.
(1)判断以下数列
是否为双底数列(只需写出结论不必证明);
①
; ②
; ③
(2)设
,若数列
是双底数列,求实数
的值以及数列
的前
项和
;
(3)设
,是否存在整数
,使得数列
为双底数列?若存在,求出所有的
的值;若不存在,请说明理由.




②当





(1)判断以下数列

①



(2)设






(3)设



