- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- + 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于数列
:
、
、
、
、
,若不改变
,仅改变
、
、
、
中部分项的符号(可以都不改变),得到的新数列
称为数列
的一个生成数列,如仅改变数列
、
、
、
、
的第二、三项的符号,可以得到一个生成数列:
、
、
、
、
.已知数列
为数列
的生成数列,
为数列
的前
项和.
(1)写出
的所有可能的值;
(2)若生成数列
的通项公式为
,求
;
(3)用数学归纳法证明:对于给定的
,
的所有可能值组成的集合为
.




























(1)写出

(2)若生成数列



(3)用数学归纳法证明:对于给定的



已知曲线
的方程为
,过原点作斜率为
的直线和曲线
相交,另一个交点记为
,过
作斜率为
的直线和曲线
相交,另一个交点记为
,过
作斜率为
的直线和曲线
相交,另一个交点记为
,……,如此下去,一般地,过
作斜率为
的直线和曲线
相交,另一个交点记为
,设点
.
(1)指出
,并求
与
的关系式
;
(2)求
的通项公式,并指出点列
,
,……,
,……向哪一点无限接近?说明理由;
(3)令
,数列
的前
项和为
,设
,求所有可能的乘积
的和.


















(1)指出




(2)求




(3)令





