- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- + 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本题满分15分)已知数列
的前
项和
满足
,(
为常数,
且
).
(1)求数列
的通项公式;
(2)设
,且数列
为等比数列.
①求
的值;
②若
,求数列
的前
和
.







(1)求数列

(2)设


①求

②若




在等比数列{an}中,a1=2,a3,a2+a4,a5成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1+
+…+
=an(n∈N*),{bn}的前n项和为Sn,求使Sn﹣nan+6≥0成立的正整数n的最大值.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1+


(本小题满分13分)设数列{an}满足:a1=1,an+1=3an,n∈N*.设Sn为数列{bn}的前n项和,已知b1≠0,2bn–b1=S1•Sn,n∈N*.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=bn•log3an,求数列{cn}的前n项和Tn.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=bn•log3an,求数列{cn}的前n项和Tn.