- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- + 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
是函数
(
且
)的图象上一点,等比数列
的前
项和为
,数列
的首项为
,且前
项和
满足
.
(1)求数列
和
的通项公式;
(2)若数列
前
项和为
,问使得
成立的最小正整数
是多少?












(1)求数列


(2)若数列





已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n.
(Ⅰ)求q的值;
(Ⅱ)求数列{bn}的通项公式.
(Ⅰ)求q的值;
(Ⅱ)求数列{bn}的通项公式.
已知数列{an},{bn}满足:a1=3,当n≥2时,an﹣1+an=4n;对于任意的正整数n,
.设{bn}的前n项和为Sn.
(1)求数列{an}及{bn}的通项公式;
(2)求满足13<Sn<14的n的集合.

(1)求数列{an}及{bn}的通项公式;
(2)求满足13<Sn<14的n的集合.