- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- + 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了( )
A.60里 | B.48里 | C.36里 | D.24里 |
已知等比数列
的各项均为正数,
成等差数列,且满足
,数列
的前
项和
,
,且
.
(1)求数列
和
的通项公式;
(2)设
,求数列
的前
项和
.
(3)设
,
,
的前
项和
,求证:
.








(1)求数列


(2)设




(3)设






已知数列
是公比大于
的等比数列,
为数列
的前
项和,
,且
,
,
成等差数列.数列
的前
项和为
,
满足
,且
,
(1)求数列
和
的通项公式;
(2)令
,求数列
的前
项和为
;
(3)将数列
,
的项按照“当
为奇数时,
放在前面;当
为偶数时,
放在前面”的要求进行排列,得到一个新的数列:
,
,
,
,
,
,
,
,
,
,
,
,求这个新数列的前
项和
.















(1)求数列


(2)令




(3)将数列




















已知等比数列{an}的前n项和为Sn,公比q>0,S2=2a2-2,S3=a4-2,数列{an}满足a2=4b1,nbn+1-(n+1)bn=n2+n,(n∈N*).
(1)求数列{an}的通项公式;
(2)证明数列{
}为等差数列;
(3)设数列{cn}的通项公式为:Cn=
,其前n项和为Tn,求T2n.
(1)求数列{an}的通项公式;
(2)证明数列{

(3)设数列{cn}的通项公式为:Cn=

设
是首项为正数的等比数列,公比为
,则“
”是“对任意的正整数
,
”的( ).





A.充要条件 | B.充分不必要条件 | C.必要不充分条件 | D.既不充分也不必要条件 |